

1

Plant your tree of Java objects

2

Table of Contents
Introduction... 3

Getting Started .. 4

What is it? .. 4

What is the objective? .. 4

When to use? ... 5

Requirement .. 6

Importing ... 6

Note ... 7

Usage .. 7

@Tree ... 9

@Id .. 9

@Parent ... 9

First code snippet ... 9

Functional Overview .. 12

Basic Concepts .. 12

Interfaces & Classes ... 12

API Transformation Process ... 14

Root Element .. 14

Contexts ... 15

Lifecycle ... 16

Persist Element... 17

Update Element .. 17

Interface Methods .. 17

Architecture Overview .. 23

Structural Composition .. 24

Behavioral Composition ... 25

Technical Details .. 26

Contexts ... 27

Phases ... 30

Element Lifecycle ... 30

Sessions... 31

Specifications & Validations .. 35

API Transformation Process ... 37

3

Introduction
Welcome to the official documentaƟon of the HappyTree API v2.0.0.

This document is divided into 3 parts. The first part aims to guide developers through
geƫng started, briefly explaining what the HappyTree API is and its purpose.
AddiƟonally, the first code snippets are shown.

Next, this document will present a funcƟonal perspecƟve. Here, usage, basic concepts,
contexts, and lifecycles are introduced.

Finally, we will show through architectural specificaƟons how the HappyTree API works.
This is an in-depth approach that aims to present API details relaƟng to structural
composiƟon, behavior, and more technical aspects.

4

Getting Started
What is it?
HappyTree is a data structure API designed for handling Java objects that have a tree-like
behavior, where an @Id aƩribute of an object is referenced as a @Parent aƩribute of its
children.

In certain circumstances there is a need to convert a list of Java objects, which could
represent a model layer in a business context, into an actual hierarchical tree structure
in memory, where objects contain their children and each child contains its own children
collecƟon and so on.

When there is a need to organize a collecƟon (Set/List) of objects, where each object
relates to another object of the same type through an idenƟfier aƩribute, in a tree-like
manner, the HappyTree API is able to transform this structure into an actual tree
structure in memory, where each object will be wrapped into a tree node object, called
Element, and each element contains its children elements where each child contains its
own children and so on, recursively.

From this point, the API client can handle those elements within a tree, such as
adding/removing children from nodes, moving nodes to another point of the tree or
even to another tree, copying nodes to other trees, converƟng trees into JSON/XML, etc.

Therefore:

“HappyTree API is a data structure API designed for the Java programming language
that consists of transforming linear structures of Java objects into a tree structure and

allowing their handling.”

What is the objective?
The HappyTree API aims to provide a way of creaƟng new trees, creaƟng trees from an
exisƟng collecƟon of objects that have tree-like behavior, as well as for handling these
trees. It provides interfaces for the API client for three primary and clear objecƟves:

 Handle Java objects as if they were nodes within trees to perform operaƟons
such as copying, cuƫng, removing, creaƟng, persisƟng/updaƟng, etc. on those
objects.

 Transform linear data structures of Java objects that have tree-like behavior into
an actual tree.

 Create new trees from scratch.

The first purpose represents the basic operaƟons of the trees, when the API client
desires to change the state of the nodes (officially called Element in the context of the
API) in the trees, to move, copy, remove, create and update those nodes.

5

The second purpose is suitable for situaƟons in which the API client needs to transform
a collecƟon of plain objects, which have a logical tree relaƟonship between them, into
an actual tree. Here, each element contains its collecƟon of child elements, and each
child from this collecƟon contains its own children recursively.

The last one allows the API client to create new trees from scratch, persisƟng element to
element to build the tree structure as desired.

When to use?
This is useful when the developer feels the need to handle objects that have a tree-like
behavior in their applicaƟons. There are several scenarios in which this API can be useful,
such as:

 Handling directory structures.

 Handling organizaƟonal structures.

 Handling visual component structures.

 Handling product category structures.

 Handling comment/reply-to-comments structures.

 And many other scenarios.

For the above scenarios, when the developer already has a previous collecƟon of objects
in which those objects are only linearly referenced by each other, this API has precisely
this purpose of transforming this linear structure into a physical tree structure. This
process is known as the API TransformaƟon Process, and it is one of the main core
funcƟonaliƟes of the HappyTree API.

If, for example, the project has a collecƟon of Java model objects represenƟng directories
in a file system, where each directory object has an idenƟfier aƩribute which is
referenced by the parent aƩribute from another directory object in the same collecƟon,
then this API can be used to transform this linear structure into an actual tree structure
in memory.

Suppose we have something like this:

//Linear tree structure.
public class Directory {
 //Own ID
 private Integer dirId;
 //Super node reference
 private Integer dirParentId;
 //Simple attribute
 private String dirName;

 //getters and setters
}

6

But we want this:

NoƟce that in the first Directory class; to reference one instance to its parent, it is
necessary to have an implementaƟon that binds the respecƟve “dirParentId” aƩribute
with the “dirId” from another instance. Here, the objects are related among themselves
in a linear way, with no list of children or operaƟons to deal with them. It is just a simple
Java POJO.

The second Element class is now the ideal way to represent a node within a tree, as each
instance of the Element class will structurally have its own children collecƟon. Also, it
can “store” the real object from the first example, the Directory class, in other words,
this object is what is called a “wrapped object node”. NoƟce that one instance of the
Element now has its collecƟon of children as well as a set of operaƟons that allow the
API client to handle them.

Requirement
>= Java 8

Importing
To import the HappyTree API for inside of a Java project, copy one of the following codes:

Maven

Gradle

//Recursive tree structure wrapped through the Element object.
public interface Element<Directory> {
 private Object id;
 private Object parentId;
 private Collection<Element<Directory>> children;

 //Skeleton methods.
 public void addChild(Element<Directory> child);
 public void removeChild(Element<Directory> child);
 public void wrap(Directory directory);
 public Directory unwrap();
}

<dependency>
 <groupId>com.madzera</groupId>
 <artifactId>happytree</artifactId>
 <version>2.0.0</version>
</dependency>

implementation 'com.madzera:happytree:2.0.0'

7

Note
Maven

Compared to v1.0.0, the groupId of this new version has changed:

- <groupId>com.madzera.happytree</groupId>
 <artifactId>happytree</artifactId>
- <version>1.0.0</version>
+ <groupId>com.madzera</groupId>
 <artifactId>happytree</artifactId>
+ <version>2.0.0</version>

Gradle

- implementation 'com.madzera.happytree:happytree:1.0.0'
+ implementation 'com.madzera:happytree:2.0.0'

Usage
To demonstrate how to use it, let’s consider a pracƟcal exercise common in several
projects: a simple menu structure. Suppose we received a Ɵcket to adjust the system
menu where a submenu item needs to be relocated to another menu category, and all
menu items are stored in a relaƟonal database. We should have something like this:

MENU_ID MENU_LABEL MENU_PARENT_ID MENU_DESCRIPTION
105 AdministraƟon null
110 Control Panel 105 …
302 Users null
321 My Profile 302 …
322 Access Control 302 …

The purpose of the Ɵcket would be to relocate the "Access Control" menu to stay within
the "AdministraƟon" menu, in other words, it would move from the “Users” menu to the
“AdministraƟon” menu.

However, because it is a legacy project, the development team did not take the necessary
care, and when loading this structure from the database to the respecƟve Java Menu
objects, the development team did not physically treat this enƟre structure as tree
menus. Therefore, the object in quesƟon looks like this simple POJO:

public class Menu {
 private Integer menuId;
 private String menuLabel;
 private Integer menuParentId;
 private String menuDescription;

//Default constructor and getters & setters.
}

8

As each object of the class above represents a menu item, we do not have here, in terms
of object-oriented programming, a defined tree structure, but rather a structure that
matches the way it is stored in the database, that is, a relaƟonal/linear structure.

But this is not what is intended, because in addiƟon to the structure not being physically
like a tree, some extra work will probably be necessary to implement recursive methods
and other methods to perform operaƟons on the nodes of the menu tree. Therefore,
this would be a good situaƟon to use the HappyTree API.

The above structure would be transformed by the HappyTree API (through the API
TransformaƟon Process) into:

With the transformaƟon performed, each Element object encapsulates (wraps) its
respecƟve Menu object within itself, and each Element object is physically posiƟoned in
the tree, thus represenƟng a tree node.

In addiƟon, each element can have several other elements within it as children, and each
child can have other children, and so on, recursively represenƟng a complete tree.

AŌer the tree is built, you can relocate the desired menu item using the interfaces
provided by the HappyTree API, without the need to implement any addiƟonal code.

To solve the Ɵcket, it is necessary to put some Java annotaƟons in the Menu class:

public interface Element<Menu> {
 private Object id;
 private Object parentId;
 private Collection<Element<Menu>> children;
 private Menu wrappedNode;

 //Skeleton methods.
 public void addChild(Element<Menu> child);
 public void removeChild(Element<Menu> child);
 public void wrap(Menu menu);
 public Menu unwrap();

//Other methods.
}

@Tree
public class Menu {
 @Id
 private Integer menuId;
 private String menuLabel;

@Parent
 private Integer menuParentId;
 private String menuDescription;

 //Default constructor and getters & setters

}

9

@Tree
It indicates that an object in this class can represent a node within a tree. It is useful
when there is a collecƟon of objects that this class annotates to be converted
(transformed) automaƟcally into nodes within a tree. This process is known as the API
TransformaƟon Process.

@Id
Unique and non-null idenƟfier of the object to be transformed.

@Parent
IdenƟfier of the parent object to which the current object will bind during
transformaƟon.

There are some condiƟons for the API TransformaƟon Process to be successful:

 The three annotaƟons must be present in the class to be transformed.

 The value of the aƩribute annotated by the @Id must be mandatory, while the
aƩribute annotated by the @Parent can be null, or point to a non-existent parent.
This @Parent aƩribute is responsible for moving or not moving the object to the
root level of the tree, depending on whether it is null or not found.

 The aƩribute annotated by the @Id must be of the same type as the aƩribute
annotated by the @Parent.

From this point on, aŌer just adding these annotaƟons to the class aƩributes, we have
everything we need to transform this linear structure into a real tree structure. We now
have the base for our first code snippet.

First code snippet
To iniƟalize the menu tree in the example above, and any other type of tree, we use a
code snippet that is quite common and will always be used at any tree iniƟalizaƟon:

From the code above, the tree is already built and has a session idenƟfier named
"myFirstHappyTree". Every iniƟalized tree (session) has a unique and non-null session
idenƟfier. We will discuss these concepts in more detail later.

public void foo() throws TreeException {
 Collection<Menu> menus = myObject.getMenuFromDatabase();
 TreeManager manager = HappyTree.createTreeManager();
 TreeTransaction transaction = manager.getTransaction();
 transaction.initializeSession("MyFirstHappyTree", menus);
}

10

However, it remains to fulfill the objecƟve of the Ɵcket. Although the tree is already built,
it is sƟll necessary to reallocate the "Access Control" menu from "Users" to
"AdministraƟon".

As we already know, through the database in the example above, the menu item with
the label "Access Control" has the @Id 322 and the menu item "AdministraƟon" has the
@Id 105. With that in mind, below is the code to relocate the menu item:

Now, the Ɵcket has been solved. However, this pracƟcal example used a collecƟon of
objects that represent menu items from a database. Another possibility is to build the
same tree from scratch, creaƟng it element by element unƟl the resulƟng tree is ready

public void foo() throws TreeException {
 Collection<Menu> menus = myObject.getMenuFromDatabase();
 TreeManager manager = HappyTree.createTreeManager();
 TreeTransaction transaction = manager.getTransaction();
 transaction.initializeSession("MyFirstHappyTree", menus);

 Element<Menu> administration = manager.getElementById(105);
 Element<Menu> accessControl = manager.getElementById(322);
 manager.cut(accessControl, administration);

//Alternatively, this also can be used
 //manager.cut(322, 105);
}

public void foo() throws TreeException {
 final Integer admId = 105;
 final Integer accessId = 322;

 Menu adm = new Menu();
 Menu ac = new Menu();

 adm.setMenuId(admId);
 adm.setMenuLabel("Administration");
 ac.setMenuId(accessId);
 ac.setMenuParentId(admId);
 ac.setMenuLabel("Access Control");

 TreeManager manager = HappyTree.createTreeManager();
 TreeTransaction transaction = manager.getTransaction();
 transaction.initializeSession("MyFirstHappyTree", Menu.class);

 Element<Menu> administration = manager.createElement(admId, null, adm);
 Element<Menu> accessControl = manager.createElement(accessId, admId, ac);

 administration.addChild(accessControl);

 //In fact, this saves the new element within the tree
 administration = manager.persistElement(administration);
}

11

The most important difference compared to the first example is the line
“transaction.initializeSession("MyFirstHappyTree", Menu.class);”. Here, the class type is
specified instead of a collecƟon of Menu objects, because the tree is being built from
scratch. In this case, the API client needs to create elements one by one and, in the end,
use the “manager.persistElement(administration)” method to save the new elements.

12

Functional Overview
Basic Concepts
HappyTree API is a Java library that helps Java developers handle data structures with
hierarchical behavior. It is a simple and small library; despite this, it is sƟll considered an
API because it has a set of rules and validaƟons that are applied to the interface’s
methods provided to the API client. The HappyTree API also implements lifecycle
concepts regarding the elements that represent tree nodes, as well as in the API
TransformaƟon Process.

Furthermore, contexts are also applied within the HappyTree API, because when the API
client obtains an element from a tree, it is obtaining a copy of that element so that it can
edit it and then update the tree.

As can be observed, there is a whole set of rules, validaƟons, and lifecycle concepts, as
well as contexts, that define HappyTree as an API, even though it is a small Java library.

With this in mind, understanding these concepts becomes necessary before we move on
to the architectural specificaƟon of the HappyTree API. Here, these concepts will be
presented in a basic way, but they will be explored in greater depth throughout the next
chapter.

Interfaces & Classes
Interface DescripƟon

Element Represents a node within a tree.
TreeManager Responsible for providing operaƟons to the API client.
TreeSession It is the tree. It stores all elements within the tree.
TreeTransacƟon Stores sessions but it is only capable of working on one session at

a Ɵme.
HappyTree Entry point class.
TreeExcepƟon ExcepƟon class of the HappyTree API.

Element

An element represents a node in a tree. It can have none or many other elements within
the tree, such as children, and each child, likewise, can have several other elements, and
so on.

In addiƟon, each element has a unique and non-null @Id and a nullable @Parent,
represenƟng the parent idenƟfier which the element references. If the parent is not
found or is null, then the element will stay at the root level of the tree.

This object has a defined lifecycle, which will be explained later.

13

TreeManager

Object responsible for performing operaƟons on trees. It is through the TreeManager
that it is possible to create, cut, copy, remove, update and persist elements over a given
tree session that was selected through a transacƟon.

All TreeManager operaƟons need a transacƟon referencing an acƟve session, otherwise
a TreeExcepƟon will be thrown.

Therefore, all these interfaces are related in the following way:

TreeManager (invokes) -> TreeTransacƟon (to store) -> TreeSession (that contains) -> Element

TreeSession

A session is nothing more than a tree, containing all the elements. The session is
represented by the TreeSession interface and must contain a unique (and not null) String
idenƟfier, considering that the API client may contain mulƟple sessions. A session can
have 3 states:

State DescripƟon
AcƟvated The tree exists and can be handled.
DeacƟvated The tree exists and cannot be handled.
Destroyed The tree does not exist anymore.

TreeTransaction

A transacƟon is an object that is always linked to the TreeManager interface instance and
is responsible for managing the various sessions (trees) that the API client may have. It
is represented by the TreeTransacƟon interface, and its main funcƟon is to perform
management operaƟons on sessions (iniƟalize, deacƟvate, acƟvate, and destroy).

Although it manages all API client sessions, a transacƟon can only work on a single
session at a Ɵme; that is, the transacƟon can funcƟon as a session selector by invoking
the "transaction.sessionCheckout(sessionIdentifier)" method. The session to which the
transacƟon is currently poinƟng is known as the current session. The methods of the
TreeTransacƟon interface that perform operaƟons on sessions and that do not have
parameters (session idenƟfier parameter) are applied directly to the current session. If
the current session has not yet been selected, null is returned. It occurs in the following
methods:

 destroySession().
 acƟvateSession().
 deacƟvateSession().
 currentSession().

To perform any operation on the TreeManager interface, it is mandatory that the transaction
associated with the manager has a session and that this session is active; otherwise, a
TreeExcepƟon will be thrown.

14

HappyTree

Final class and not instanƟable. This class is the one that provides the iniƟal starƟng point
to use the HappyTree API. It is only intended to return instances of TreeManager.

TreeException

ExcepƟon class that is thrown by HappyTree API. This excepƟon can be thrown by the
TreeManager and TreeTransacƟon interfaces if any rule or validaƟon is not met.

API Transformation Process
As menƟoned earlier, there are two ways to create new trees: from an exisƟng collecƟon
of linear objects that represent the tree nodes (whose classes have the @Tree, @Id, and
@Parent annotaƟons); or from a tree built from scratch, where the tree is constructed
manually.

The API TransformaƟon Process occurs in the first situaƟon. This is precisely the act of
transforming a structure (collecƟon) of linear objects, where the objects are related to
each other through idenƟfiers (@Id and @Parent), into an actual tree in memory.

The API TransformaƟon Process is automaƟcally triggered when
“transaction.initializeSession("My Tree Session ID", myObjects)” is invoked, where
“myObjects” is the collecƟon of objects to be transformed into nodes within a tree.

Root Element
When iniƟalizing a session (tree), whether through the API's TransformaƟon Process
method or manually creaƟng a tree from scratch, it is the sole and exclusive
responsibility of the HappyTree API to create the root element.

The root element, as the name suggests, is the first element in the tree hierarchy,
corresponding to the parent of all other elements. Being a special element that can only
be created by the HappyTree API itself, the root element is simply an element like all the
others, with its children below it.

The conceptual difference between a root element and the elements below it is that a
root element obviously does not have @Id, @Parent, or the wrapped object node.
Therefore, some operaƟons involving the Element interface cannot be applied to the
root element, such as:

 setId().
 setParent().
 wrap().

Since the root element does not have these three properƟes menƟoned above, the
respecƟve geƩers always return null.

15

From the perspecƟve of the TreeManager interface, some operaƟons are not allowed
for root elements, throwing a TreeExcepƟon. These operaƟons are:

 copy().
 cut().
 removeElement().
 persistElement().

The reason for this is that it doesn't make sense to use the "manager.cut(source, target)",
"manager.removeElement(element)" or "manager.copy(source, target)" operaƟons for the
root elements. To copy the data from the root element, the API client can invoke
"transaction.cloneSession(from, to)" as it has the same purpose, that is, copying the
enƟre tree. For the "manager.persistElement(element)" method, it also doesn't make
sense to use it for the root element because this method should only be used for new
elements to be persisted within an already exisƟng tree.

Contexts
This consists of a fundamental concept that determines the perspecƟve from which the
API client is currently using the Element objects. These perspecƟves stem from the fact
that when the API client retrieves an element from the tree, it is obtaining a copy of that
element. This is as if the original tree was "mirrored" exclusively for the API client, so
that elements of this tree can be modified by the API client and subsequently
synchronized with the original tree. This synchronizaƟon is nothing more than the act of
updaƟng the original tree according to the changes made by the API client.

There are two contexts: the Session Context and the API Client Context.

Session Context

The Session Context represents the context that stores the actual trees of the API client.
It's where the tree is actually stored, and to modify this tree, the only available way is
through the TreeManager interface, provided by the HappyTree API to the API client.
When using any method of this interface that makes a direct change to the tree, this
change will be applied immediately, without the need to explicitly update the tree by
invoking the "manager.updateElement(element)" method.

Imagine there's a "box" of trees, where each tree is a session. Therefore, the Session
Context corresponds precisely to this "box," and everything outside this box is outside
the Session Context.

API Client Context

This refers to everything outside the Session Context. In other words, when the API client
retrieves an element, any changes to that element will not be applied immediately. It's
necessary to synchronize the change in the original tree for it to take effect. To do this,

16

simply invoke "manager.updateElement(element)" to synchronize the element to apply the
change, or "manager.persistElement(element)" to add a new element to the tree.

Lifecycle
The HappyTree API implements lifecycle concepts in two places: in Element objects and
in the API TransformaƟon Process. The explanaƟon of the API TransformaƟon Process
lifecycle will not be discussed here, only in the next chapter, because the implementaƟon
of this lifecycle is not relevant to this secƟon, considering that it is a transparent process
for the API client, and because it is an architectural concept of the API itself.

The concept of element lifecycle is closely linked to context, as it is the context that
determines whether an element is currently within the original tree or whether it is
suscepƟble to being changed by the API client. Depending on the element's lifecycle
state and which method is invoked in the TreeManager interface, a TreeExcepƟon may
be thrown. This occurs because some operaƟons only allow specific element states.

There are 3 states in the lifecycle of an element:

Element Lifecycle

NOT_EXISTED

This is the state when the element is new to the tree session. For this element to be
included in the tree, it is necessary to invoke the "manager.persistElement(element)"
method and thus pass it to the ATTACHED state. To create a new element in a tree
session, simply invoke the method "manager.createElement(objId, objParentId, obj)".

ATTACHED

This indicates that the element is synchronized with the original tree. An element is in
this state when the API TransformaƟon Process is executed, and aŌer invoking the
methods "manager.persistElement(element)" and "manager.updateElement(element)".

DETACHED

This occurs when the API client modifies an Element object that was previously obtained.
The API client can modify the element in such a way as to:

 Change its @Id.
 Change its @Parent.
 Unwrap the object node from the Element object and wrap it again.
 Add and remove children.

Note: the list above does not apply to root elements.

17

Persist Element
The "manager.persistElement(element)" method should only be called when the element
is new (NOT_EXISTED state) to the current session's tree. To persist, the element as well
as all its descendants must also be new. Otherwise, a TreeExcepƟon will be thrown.

Update Element
When the API client obtains an element from the tree through the TreeManager
interface, such as by invoking the "manager.getElementById(id)" method, and then
modifies it or one of its descendants, to make the change effecƟve it is necessary to
"commit" the changes using the "manager.updateElement(element)" method.

If the element or one of its descendants has a state other than ATTACHED or DETACHED
(precisely NOT_EXISTED), a TreeExcepƟon will be thrown.

There is a possibility that the API client might retrieve elements but not modify them
(ATTACHED state). In this scenario, the "manager.updateElement(element)" method doesn't
throw a TreeExcepƟon but also doesn't do anything.

Interface Methods
Below are the lists of each interface and its respecƟve methods and descripƟons.

Element

Interface DescripƟon
getId() Obtains the element idenƟfier. This idenƟfier

is unique within the tree session when
aƩached to the tree.

setId(Object id) Sets the element idenƟfier. The change
requires updaƟng the element to take effect.
The @Id must be unique and non-null.

getParent() Obtains the parent idenƟfier of this element.
setParent(Object parent) Sets the parent idenƟfier reference of this

element. If null or nonexistent, the element
will be at root level when persisted/updated.

getChildren() Obtains all child elements of the current
element. This includes all descendants
recursively.

addChildren(Element<T> child) Adds a new child element into the current
element. If the child contains children, they
will also be added.

18

addChildren(Collection<Element<T>>
children)

Adds a list of child elements to be
concatenated to the current children list.
Includes all nested children recursively.

getElementByid(Object id) Searches within the current element for an
element according to the @Id parameter.
Returns null if not found. Search is
performed recursively.

removeChildren(Collection<Element<T>>
children)

Removes a subset of elements within this
one. All children and elements below the
hierarchy are also removed recursively.

removeChild(Element<T> child) Removes the specified child element from
the children list. All its children and elements
below are also removed recursively.

removeChild(Object id) Removes the element from the children list
by @Id. The element and all its children are
removed.

wrap(T object) Encapsulates any object node within the
element, as long as it has the same class
type as other objects in the same tree
session.

unwrap() Returns a copy of the object node wrapped
in this element. Provides access to the
encapsulated object.

attachedTo() Returns the TreeSession instance to which
this element belongs. An element is always
associated with a session.

lifecycle() Returns the current lifecycle state of this
element (NOT_EXISTED, ATTACHED, or
DETACHED).

toJSON() Converts the whole element structure into a
JSON format (minified). This includes all
children recursively.

toPrettyJSON() Converts the whole element structure into a
well-formaƩed JSON string. This includes all
children recursively.

toXML() Converts the whole element structure into
an XML string (minified). This includes all
children recursively.

toPrettyXML() Converts the whole element structure into a
well-formaƩed XML string. This includes all
children recursively.

search(Predicate<Element<T>>
condition)

Searches for elements that saƟsfy a specific
condiƟon within this element and its
children recursively. Returns a list of
matching elements with their hierarchical
structure preserved.

19

apply(Consumer<Element<T>> action) Applies a funcƟon to be performed on this
element and all its children recursively.
Changes are not automaƟcally reflected and
require persist/update operaƟons.

apply(Consumer<Element<T>> action,
Predicate<Element<T>> condition)

Applies a funcƟon to be performed on
elements that saƟsfy the specified condiƟon
within this element's subtree. Changes
require persist/update operaƟons.

TreeManager

Interface DescripƟon
cut(Element<T> from, Element<T> to) Cuts the source element to inside of the

target element, whether for the same
session or not (they must have the same
class type). All children of the source
element will be cut as well. If target is null,
moves to root level.

cut(Object from, Object to) Cuts an element idenƟfied by its @Id and
moves it inside another element within the
same session. Returns null if the source
element is not found. If the target element is
null or not found, the source element is
moved to the root level.

copy(Element<T> from, Element<T> to) Copies the source element into the target
element in another tree session. The enƟre
structure of the copied element will be
pasted inside the target element. Copying
within the same tree is not allowed, as it
would result in a duplicate @Id excepƟon.

removeElement(Element<T> element) Removes the corresponding element from
the tree session and returns the removed
element. AŌer removal, the element and all
its children will have the NOT_EXISTED state.

removeElement(Object id) Removes the element by its @Id. All children
of the found element are removed as well
and return the removed element itself.
Returns null if @Id cannot be found.

getElementById(Object id) Returns the element given its @Id in the tree
session. Returns null if the @Id is null or the
element cannot be found in the tree.

containsElement(Element<T> parent,
Element<T> descendant)

Verifies whether the parent element
contains inside of it the descendant element
in the current session. Returns false if
elements are null or not aƩached.

containsElement(Object parent, Object
descendant)

Verifies whether the parent element
(idenƟfied by @Id) contains the descendant

20

element (idenƟfied by @Id) within the
current session. Returns false if either
element is not found.

containsElement(Element<?> element) Verifies that the current tree session has the
specified element. Returns false if element is
null, not found, or not in ATTACHED state.

containsElement(Object id) Verifies that the current tree session has the
specified element by the given @Id. Returns
false if element is not found or @Id is null.

createElement(Object id, Object
parent, T wrappedNode)

Creates an element with the @Id, parent and
the wrapped object node. Returns a new
element with the NOT_EXISTED state in
lifecycle. Must be persisted to be added to
the tree.

persistElement(Element<T> newElement) Persists a new element into the current tree
session. The new element must have a
unique idenƟfier and NOT_EXISTED state.
Returns a copy with ATTACHED state.

updateElement(Element<T> element) Updates the state of the element within the
tree. Returns a copy with ATTACHED state.

getTransaction() Obtains the TreeTransacƟon instance
associated with this manager. Every
operaƟon defined in this interface needs to
check the transacƟon.

root() Returns the root of the tree in the current
session. The root encompasses all other
elements and has no @Id, @Parent, or
object wrapped node.

search(Predicate<Element<T>>
condition)

Searches for elements that saƟsfy a specific
condiƟon within the enƟre tree structure.
Returns a list of elements (including their
children) that match the condiƟon.

apply(Consumer<Element<T>> action) Applies a funcƟon to be performed on all
elements within the enƟre tree structure
(except root). Changes are automaƟcally
reflected on the tree session.

apply(Consumer<Element<T>> action,
Predicate<Element<T>> condition)

Applies a funcƟon to be performed on
elements that saƟsfy a specific condiƟon
within the enƟre tree structure (except root).
Changes are automaƟcally reflected on the
tree session.

21

TreeSession

Interface DescripƟon
getSessionId() Returns the session idenƟfier name. A

session idenƟfier is defined when the session
is iniƟalized and must be unique.

isActive() Verifies whether the session is acƟve.
Returns true if the session is acƟve (can be
handled), false if deacƟvated (exists in
memory but cannot be handled).

tree() Returns the enƟre tree session structure,
represented by the root element. From the
root element, it is possible to navigate
through all children recursively, accessing the
enƟre tree structure.

TreeTransaction

Interface DescripƟon
initializeSession(String identifier,
Class<T> type)

IniƟalizes a new empty tree session with the
specified idenƟfier. Creates an empty tree
where the API client must create elements
one by one. The session is automaƟcally
checked out as the current session.

initializeSession(String identifier,
Collection<T> nodes)

IniƟalizes a session with a specified idenƟfier
and transforms a list of linear objects (with
logical tree structure) into an actual tree
structure through the API TransformaƟon
Process. The session is automaƟcally
available as the current session.

destroySession(String identifier) Removes the session with the specified
idenƟfier permanently. The tree and its
elements within this session are also
removed and cannot be retrieved.

destroySession() Removes the current session permanently.
The tree and its elements within this session
are also removed. The API client needs to
specify a new session to be checked out aŌer
removal.

destroyAllSessions() Removes all registered sessions
permanently. The removal occurs for both
acƟvated and deacƟvated sessions.

sessionCheckout(String identifier) Selects a tree session to work with . The
current session remains in the background
while the checked-out session becomes the
current session. Passing null or non-existent
idenƟfier cancels the current session.

22

activateSession(String identifier) AcƟvates a session by the specified idenƟfier.
With an acƟve session, its elements can be
handled freely within the tree. It does not
automaƟcally make it as the current session.

activateSession() AcƟvates the current session. With an acƟve
session, its elements can be handled freely
within the tree. The current session will
always be acƟve aŌer invoking this method.

deactivateSession(String identifier) DeacƟvates a session by the specified
idenƟfier. The session is just disabled but not
removed. With a deacƟvated session, its
elements cannot be handled.

deactivateSession() DeacƟvates the current session. The session
is just disabled but not removed from the list
of registered sessions. With a deacƟvated
session, its elements cannot be handled.

sessions() Returns the list of all registered sessions. The
list includes both acƟvated and deacƟvated
sessions.

cloneSession(String from, String to) Replicates the tree session defined by the
“from” idenƟfier to the session defined by
the “to” idenƟfier. Faithfully reproduces all
elements from source tree to target tree. If
target exists, it is replaced. It does not
automaƟcally check out the cloned session
aŌer the cloning process ends.

cloneSession(TreeSession from, String
to)

Replicates the tree session defined by the
“from” session instance to the session
defined by the “to” idenƟfier. Faithfully
reproduces all elements from source tree to
target tree. If target exists, it is replaced. It
does not automaƟcally check out the cloned
session aŌer the cloning process ends.

currentSession() Returns the current session of the
transacƟon. The current session is the one
that the transacƟon is referring to at this
moment. Returns null if no session is
checked out.

23

Architecture Overview
Although the HappyTree API can be used with relaƟve ease, reading this chapter is
recommended to gain a complete understanding of all aspects of the API.

A top-down approach is adopted, starƟng with an architectural overview and an
explanaƟon of the structural and behavioral composiƟon of the HappyTree API, and
concluding with the technical details.

In the image below, the architecture overview of the HappyTree API is presented, along
with its class packages and their respecƟve responsibiliƟes.

The HappyTree API consists of several packages, but two of them can be considered
main:

 com.madzera.happytree
This is the package through which the API client can view and use the
exposed interfaces. It contains only interfaces that must be exposed as
funcƟonaliƟes. Therefore, everything contained in this package must be
public and accessible to the API client.

24

This package contains the following interfaces:

 Element.
 TreeSession.
 TreeTransacƟon.
 TreeManager.

 com.madzera.happytree.core

This package contains the actual implementaƟons of the exposed
interfaces, in addiƟon to implemenƟng the Element lifecycle (discussed
later) and the phases of the API TransformaƟon Process. It also includes
several supporƟng classes used internally, such as factories, uƟliƟes and
helpers, validators, message repositories, and others.
Because it is intended for internal use only, this package should not be
visible to the API client, except for the HappyTree class, which serves as
the entry point to the API.

Below are the remaining packages.

 com.madzera.happytree.annotaƟon
This package contains only the annotaƟons used in the API
TransformaƟon Process. These annotaƟons define the idenƟfier, the
parent, and the object's own class (the annotated class) that will be
transformed into a node by the HappyTree API. This package is public, and
the annotaƟons provided are:

 @Tree.
 @Id.
 @Parent.

 com.madzera.happytree.excepƟon

This package contains the TreeExcepƟon class, which is thrown whenever
an error occurs. This package is public, as the API client is expected to
handle this excepƟon.

Structural Composition
An object of type Element represents a node in a tree. A tree can only exist within a
previously iniƟalized session (TreeSession). To iniƟalize a session, the API client must
invoke an object that represents a session transacƟon, known as a TreeTransacƟon.

However, a transacƟon can only be obtained through a manager that implements the
TreeManager interface, which is provided to the API client.

25

In summary, every Element is inserted into a TreeSession, which is managed within a
TreeTransacƟon, and ulƟmately accessed through a TreeManager.

Behavioral Composition
The HappyTree API allows the API client to interact with it in two disƟnct ways:
manipulaƟng elements within a tree and manipulaƟng sessions. Each session owns its
own tree, and no session can access or modify the trees of other sessions.

To enforce this isolaƟon, a session mechanism was introduced. Within a session, each
element has a unique idenƟfier inside the tree, and each session itself has a unique
idenƟfier among all open sessions in a transacƟon.

As a result, the relaƟonship between Element and TreeSession objects is intrinsic. The
other two objects available to the API client, TreeManager and TreeTransacƟon, are
responsible for manipulaƟng Element and TreeSession objects, respecƟvely.

While the TreeManager interface handles elements within sessions, the TreeTransacƟon
instance—associated with the manager—acts as a cursor, selecƟng the session (tree) on
which the TreeManager will operate.

The session state is a criƟcal concern. The current session must always be acƟve to allow
tree manipulaƟon; this is the first validaƟon performed by the HappyTree API. Although
mulƟple sessions can be acƟve simultaneously, a TreeTransacƟon can operate on only
one session at a Ɵme. The desired session is selected by the API client by invoking the
“transaction.sessionCheckout(sessionIdentifier)” method.

Thus, there are two primary enƟƟes (Element and TreeSession) and two control enƟƟes
(TreeManager and TreeTransacƟon) responsible for managing them.

26

In the image above, the TreeManager instance uses the transacƟon as a selector by first
invoking “transaction.sessionCheckout(sessionIdentifier)” before execuƟng an
operaƟon that directly affects the tree—represented in the image by the
“manager.persist(element)” operaƟon.

From the moment the API client selects a session through the
“transaction.sessionCheckout(sessionIdentifier)” method, all operaƟons performed by
the TreeManager instance apply to the selected tree. If the transacƟon does not
reference any session, or references an inacƟve session, a TreeExcepƟon is thrown for all
TreeManager operaƟons.

Technical Details
Now that the main interfaces, their funcƟonaliƟes, their relaƟonships, and their
structural and behavioral composiƟons have been presented, it is possible to explore the
technical details in greater depth.

The discussion begins with an explanaƟon of the context, followed by a descripƟon of
the phases involved in using the HappyTree API. Once these concepts are established,
the lifecycle of Element objects is examined.

27

This iniƟal explanaƟon is essenƟal for understanding why excepƟons may be thrown, as
the lifecycle of an Element within the tree forms the fundamental basis for fully uƟlizing
the HappyTree API.

Subsequently, the session states are described, along with the specificaƟons and
required validaƟons performed by the HappyTree API. To conclude, the API
TransformaƟon Process is explained.

Contexts
The HappyTree API is intended to manage object trees; however, it has no responsibility
for the changes you make to these objects, which represent the nodes in the tree.

Consider the code below:

Is the return of the last line true or false?

Does the “programFiles” directory really have the “winamp” directory inside it, as a
child, in the “DirectoryTree” session?

The answer is false. Although the "programFiles" object has the "winamp" object inside
it, this change has not yet been synchronized in the "DirectoryTree" session. As
previously stated, the HappyTree API has no responsibility for automaƟcally
synchronizing changes applied directly to tree objects.

When an element is retrieved from an already assembled tree, what is returned is a
clone of the element. The actual instance of the element is never returned—only clones.
Since the returned element may contain several children, they are all cloned and
therefore represent idenƟcal copies of the elements that exist within the tree session.

There are two ways to complete the code above to move the "winamp" directory into
"programFiles" within the “DirectoryTree” session:

"manager.updateElement(programFiles)"

TreeManager manager = HappyTree.createTreeManager();
TreeTransaction transaction = manager.getTransaction();

Collection<Directory> directories = someObject.getDirectoryTree();

transaction.initializeSession("DirectoryTree", directories);

Element<Directory> winamp = manager.getElementById(winampId);
Element<Directory> programFiles = manager.getElementById(programFilesId);

programFiles.addChild(winamp);

//True or False?
manager.containsElement(programFiles, winamp);

28

Or, alternaƟvely, by invoking the method below without applying changes directly to the
element:
"manager.cut(winamp, programFiles)"

Note: when a tree change occurs through the TreeManager interface, it is not necessary
to update the element. Every change made via TreeManager is automaƟcally
synchronized with the tree.

Based on everything discussed so far, there are two contexts, which can be understood
as perspecƟves: the API client perspecƟve and the session (the tree) perspecƟve.
Therefore, in relaƟon to the example above, the following applies:

 Before synchronizaƟon

 AŌer synchronizaƟon

Objects References

AŌer synchronizaƟon, in the example above, it is necessary to ensure that the variables
"programFiles" and “winamp” have their references updated, so they do not reference
the state prior to synchronizaƟon.

29

The API client also needs to be especially careful with the immediate return of methods:

In the example above, the API client intended to invoke the cut(Element, Element)
method but instead invoked cut(Object, Object). This is another overload of the cut()
method that accepts Object parameters instead of Element, represenƟng the elements’
@Id.
This occurs because the getElementById() method returns immediately within the
containsElement() method. Since the HappyTree API relies on Java reflecƟon, the JVM
associates the return value directly with an Object instance at runƟme.

TreeManager manager = HappyTree.createTreeManager();
TreeTransaction transaction = manager.getTransaction();

Collection<Directory> directories = someObject.getDirectoryTree();

transaction.initializeSession("DirectoryTree", directories);

Element<Directory> winamp = manager.getElementById(winampId);
Element<Directory> programFiles = manager.getElementById(programFilesId);

programFiles.addChild(winamp);

manager.updateElement(programFiles);

/*
* Still false at this point, despite the update. It is necessary to update the
* programFiles and winamp references.
*/
manager.containsElement(programFiles, winamp);

winamp = manager.getElementById(winampId);
programFiles = manager.getElementById(programFilesId);

//Now it is true.
manager.containsElement(programFiles, winamp);

TreeManager manager = HappyTree.createTreeManager();
TreeTransaction transaction = manager.getTransaction();

Collection<Directory> directories = someObject.getDirectoryTree();

transaction.initializeSession("DirectoryTree", directories);

Element<Directory> winamp = manager.getElementById(winampId);
Element<Directory> programFiles = manager.getElementById(programFilesId);

programFiles.addChild(winamp);

manager.updateElement(programFiles);

/*
* Still false because it invokes the containsElement(Object, Object)
* method instead of containsElement(Element, Element).

 */
manager.containsElement(manager.getElementById(programFilesId),

manager.getElementById(winampId));

30

Therefore, it is recommended to assign the return value of the method to a variable
rather than using an immediate return.

Phases
Now that the concept of contexts in the HappyTree API has been explained, it is much
easier to idenƟfy the execuƟon phases. The following descripƟon applies equally to a
new tree created from scratch or to a tree built through the API TransformaƟon Process,
as these phases are considered only aŌer the session has been iniƟalized.

There are three stages of execuƟon. These stages have no direct impact on API usage
and serve purely as an informaƟonal aid to facilitate understanding of the lifecycle of
Element objects within sessions.

Phase Method Description
Initial Phase getElementById()

search()

Occurs when the API client retrieves an
element. The returned element has not
yet undergone any changes made by
the API client.

Usage Phase createElement()
addChild()
addChildren()
apply()
setId()
setParent()
removeChild()
removeChildren()

wrap()

Occurs when the API client applies
changes to the element state returned
from the previous phase.

Synchronization Phase persistElement()
updateElement()

For the changes made in the previous
phase to take effect, they must be
synchronized with the tree session using
the indicated methods. After
synchronization, both contexts are
aligned.

Element Lifecycle
The concepts of contexts and phases are presented here to provide a beƩer
understanding of the lifecycle of elements in the HappyTree API. Contexts depend on the
element lifecycle to determine whether an element is synchronized with the actual tree,
while the element lifecycle itself depends on the phase—specifically, the Usage Phase—
for the HappyTree API to later determine whether the element was modified.

By using one of the methods specified in the Usage Phase (as described in the table
above), the element changes its state. Consequently, when a method from the
SynchronizaƟon Phase is invoked, the HappyTree API can detect that the element has
been modified.

31

When an element is obtained from a tree session, the API client receives an ATTACHED
element. This element represents an exact and faithful copy of the element—and all its
descendants—relaƟve to the session context, that is, the API client’s own tree.

When the API client modifies the obtained element, the copy that was previously
idenƟcal to the element in the session context no longer remains synchronized. This state
is referred to as DETACHED, since the element is no longer synchronized with the tree.

Finally, when the API client determines that the element is no longer useful to the
current tree, the element may be removed. When an element is removed from the tree
within the context of a tree session, it is said to be in the NOT_EXISTED state. Similarly,
when an element is created from scratch using
“manager.createElement(objectId, objectParentId, object)”, the API client creates an
element that does not yet belong to the tree, and its state is therefore NOT_EXISTED.

It is important to note that all the explanaƟons above apply only from the element’s
perspecƟve. When using a writer method from the TreeManager interface, the
modificaƟon is applied automaƟcally, provided that all elements passed as parameters
are in the ATTACHED state.

Thus, the lifecycle repeats itself from the moment an element is created or retrieved,
unƟl its eventual removal.

Sessions
The TreeSession interface is intended to represent a tree of elements. When referring to
either the session or the tree, both concepts share the same meaning, since a session
object contains the enƟre tree structure within it.

As menƟoned at the beginning of this documentaƟon, a transacƟon can operate on only
one session at a Ɵme. To select the tree to work with, the API client must invoke the

32

"transaction.sessionCheckout(sessionIdentifier)" method. AlternaƟvely, new sessions
can be created by invoking either:

 transaction.initializeSession("MyFirstHappyTree", Menu.class)
 transaction.initializeSession("My Tree Session ID", myObjects)

This depends on the creaƟon approach (from scratch or via the API TransformaƟon
Process, respecƟvely).

Session State

The API client must ensure that the session it intends to handle is acƟve; otherwise, a
TreeExcepƟon will be thrown. This validaƟon is performed in almost all methods of the
TreeManager object.

Basically, there are only three possible states for a session:

 AcƟvated
The session exists in memory and is enabled to be handled.

 DeacƟvated
The session exists in memory but is not enabled to be handled. When a
session is deacƟvated, the API client cannot manipulate the tree through
TreeManager methods.

 Destroyed
The session no longer exists in memory. In this case, the reference to the
session object is null.

State Exists? Can it be handled?
AcƟvated ✔ ✔
DeacƟvated ✔ X
Destroyed X X

Session Initialization

The only way to create new sessions (new trees) is through the interface specifically
responsible for session management, which is the TreeTransacƟon interface.

As menƟoned, several Ɵmes throughout this documentaƟon, there are two ways to
iniƟalize (create) a session:

 From scratch

In this approach, the API client creates a tree manually by creaƟng each
element individually and persisƟng them one by one.

It is important to note that, in this case, the API client is responsible for
providing all the informaƟon required to build each element, including:

33

 The element idenƟfier.
 The parent element idenƟfier.
 the object to be encapsulated within the element itself (wrapped

object node).

 From API TransformaƟon Process

In this approach, the API client already has a pre-exisƟng collecƟon of
objects annotated with @Tree, @Id, and @Parent, allowing these objects
to be automaƟcally arranged into a tree structure.

In this case, all element informaƟon is assigned automaƟcally during the
API TransformaƟon Process, including:

 The element idenƟfier.
 The parent element idenƟfier
 The wrapped object node.

In both approaches, two parameters are mandatory when starƟng a new session:

 Session IdenƟfier

A string represenƟng the session name. This parameter is required, and
no other session may exist with the same name, including deacƟvated
sessions.

 Session Type

This parameter indicates the node class type of the tree (e.g., categories,
directories, classificaƟons, etc.).

When iniƟalizing a session from scratch, the class type is passed explicitly,
as shown in the example above ("Menu.class").

When iniƟalizing a session using the API TransformaƟon Process, this
type is implicitly defined by the collecƟon passed as a parameter. As a
result, each wrapped object node in the collecƟon is automaƟcally
encapsulated within its corresponding element.

AŌer iniƟalizaƟon, the transacƟon automaƟcally references the newly created session,
regardless of whether the transacƟon was referencing a different session before the
iniƟalizaƟon process.

Multiple Session Management

When a transacƟon manages mulƟple sessions of the same or different types, the
HappyTree API supports relocaƟng elements between sessions through the
TreeManager interface.

To perform this operaƟon, it is important to understand certain aspects of session types,
as well as the disƟncƟon between an element idenƟfier and a session idenƟfier:

34

 A session cannot have the same idenƟfier as another session managed by the
transacƟon, regardless of the session type.

 An element cannot share the same idenƟfier value with another element within
the same tree (i.e., the same session).

 An element may share the same idenƟfier value with an element in a different
tree, regardless of the type of that tree.

With these concepts in mind, when relocaƟng an element to another tree—either by
copying or moving it—using the methods respecƟvely:

 manager.copy(sourceElement, targetElement)
 manager.cut(sourceElement, targetElement)

A TreeExcepƟon will be thrown under the following condiƟons:

 The API client has not selected any session (acƟve).

 The current session to which the “sourceElement” belongs, or the session to
which the “targetElement” belongs, is not acƟve.

 The “sourceElement” does not belong to the current session referenced by the
transacƟon. This occurs when the current session differs from the session of the
“sourceElement”.

 The “sourceElement” is a root element.

 The “sourceElement”, the “targetElement”, or at least one of their child elements
is in a DETACHED or NOT_EXISTED lifecycle state.

 The session containing the “targetElement” already has an element with the
same @Id value as the “sourceElement”.

 The session containing the “targetElement” has a different type from the session
to which the “sourceElement” belongs.

Cloning Session

The HappyTree API provides built-in support for cloning trees. With a single method
invocaƟon, an enƟre tree can be cloned, with all its elements preserving the informaƟon
from the original tree.

To clone a tree, the API client must invoke the “transaction.cloneSession(from,to)”
method, where “from” can be either a TreeSession instance or a String represenƟng the
idenƟfier of the source session, and “to” is a String represenƟng the idenƟfier of the
newly cloned session.

Note: If a session already exists with the same idenƟfier as the “to” parameter, this
method will overwrite the exisƟng tree, resulƟng in the complete loss of any previously

35

stored informaƟon. It is the developer’s responsibility to verify that the target session
idenƟfier is not already in use before invoking this method.

Specifications & Validations
The HappyTree API performs a series of validaƟons to prevent inconsistencies that
violate its specificaƟons. These validaƟons occur in two situaƟons: during the API
TransformaƟon Process, and when invoking methods of the TreeManager interface aŌer
the tree has been built.

The HappyTree API may throw excepƟons of two types: TreeExcepƟon and
IllegalArgumentExcepƟon.

TreeExcepƟon is an excepƟon class specific to the HappyTree API and is thrown
whenever an API specificaƟon is violated.

IllegalArgumentExcepƟon is a runƟme excepƟon naƟve to Java. Within the context of the
HappyTree API, this excepƟon is thrown when input parameters are null.

TreeTransaction - API Transformation Process (before the tree is built)
Specification Message Type

The input parameters must
not be null.

Invalid null/empty
argument(s).

IllegalArgumentException

The session identifier must
be unique.

Duplicate session identifier. TreeException

The class of the object to
be transformed must be
annotated with @Tree.

No @Tree annotation found. TreeException

The identifier of the object
to be transformed must be
annotated with @Id.

No @Id annotation found. TreeException

The parent identifier of the
object to be transformed
must be annotated with
@Parent.

No @Parent annotation
found.

TreeException

The class of the object to
be transformed must have
a default constructor,
getters, and setters.

Unable to transform input
objects. Ensure the presence
of a default constructor,
getters, and setters.

TreeException

The value of the @Id
attribute must not be null.

Invalid null/empty
argument(s).

IllegalArgumentException

The value of the @Id
attribute must be unique
within the same tree
session.

Duplicate ID. TreeException

The @Id and @Parent
attributes must be of the

ID type mismatch error. TreeException

36

same type.

The wrapped object node
does not implement the
Serializable interface.

The wrapped object must
implement Serializable.

TreeException

TreeManager - Methods (after the tree is built)
Specification Message Type

The input parameters must
not be null.

Invalid null/empty
argument(s).

IllegalArgumentException

When invoking an
operation that directly
handles elements in the
tree. The transaction must
refer to a defined session.

No defined session. TreeException

When invoking an
operation that directly
handles elements in the
tree, the transaction must
refer to an active session.

No active session. TreeException

When handling an element,
ensure that the associated
transaction references the
session to which the
element belongs.

Element not defined in this
session.

TreeException

When copying or moving
an element from one tree
to another, both trees must
have the same type of
object that the element
wraps.

Type mismatch error:
incompatible parameterized
tree type.

TreeException

It is not possible to
perform operations on
elements that represent
the root of a tree.

The root of the tree cannot
be handled for this
operation.

TreeException

Operations that change the
state of the tree can only
be performed depending
on the lifecycle of the
elements involved in these
operations.

 It is not possible to
copy/cut/remove
elements. Invalid
lifecycle state.

 It is not possible
to persist the
element. Invalid
lifecycle state.

 It is not possible

TreeException

37

to update the
element. Invalid
lifecycle state.

Duplicate ID elements are
not allowed within the
same tree.

Duplicate ID. TreeException

When attempting to cut an
element by its @Id, the
operation fails if the
element does not exist.

It is not possible to cut the
element. Source element
not found.

TreeException

API Transformation Process
As menƟoned earlier, this mechanism is responsible for transforming a linear structure
of Java model objects that logically exhibit tree-like behavior but are not structurally
represented as such.

The expression “having a tree behavior even though it is not structurally represented as
one” refers to a collecƟon of objects that are logically related to one another, where one
object is the child of another, but where these relaƟonships are not expressed through
structural containment.

This mechanism therefore transforms the linear structure so that objects become
structurally nested within one another. As a result, an object may contain a list of child
objects, each of which may, in turn, contain its own list of children, and so on.

As previously discussed, there are two ways to iniƟalize a session. One of them involves
passing a collecƟon of objects to be transformed, which triggers the API TransformaƟon
Process. Let us now review this process in more detail.

Creating a new tree from scratch

In this case, no API TransformaƟon Process is involved. The API client simply iniƟalizes a
standard new tree session to be handled aŌerward. As a result, the tree iniƟally contains
only the root element.

The method used to iniƟalize a standard tree session is
TransacƟon.iniƟalizeSession(String, Class), where the String parameter represents the
session idenƟfier (which must be unique and not null), and the Class parameter
represents the parameterized type of the tree. This type is used by the Element interface
to wrap the object that represents a node in the tree.

38

Creating a new tree using the API

The API client has a structure that represents a tree, but it is designed in a linear form,
through the TreeNode example class as shown below:

This structure is then transformed into:

The version of the method to iniƟalize a tree session through API TransformaƟon
Process is TransacƟon.iniƟalizeSession(String, CollecƟon) where String is the session
idenƟfier (unique and not null) and CollecƟon represents the list of objects to be
transformed by the API TransformaƟon Process.

This collecƟon contains objects that their class is annotated by @Tree, @Id and @Parent
and consequently represents the parameterized type of the tree. During the
transformaƟon process (API TransformaƟon Process lifecycle), these objects will be
automaƟcally wrapped within their respecƟve elements in the current tree session, thus
represenƟng nodes in the tree. To unwrap the respecƟve object from an element, simply
invoke Element.unwrap().

Note that the original object is now encapsulated within an Element. Therefore, when
the API client wants to retrieve the object corresponding to a specific posiƟon in the
tree, it must first locate the corresponding element (for example, by using
Element.getElementById(Object)) and then extract the object by invoking
Element.unwrap().

When extracƟng the wrapped object node using Element.unwrap(), the HappyTree API
always returns a copy of the original object. If the API client needs to modify any property
of this object, it must invoke Element.wrap(TreeNode) to re-wrap the modified object

39

and then call TreeManager.updateElement(Element) to synchronize and apply the
change.

ATP Lifecycle

The API TransformaƟon Process has an internal lifecycle composed of disƟnct phases
that aim to transform a linear structure of objects—which logically represent a tree data
structure—into an actual tree.

This lifecycle has no funcƟonal impact on how the API client uses the API TransformaƟon
Process. The explanaƟon provided here is purely informaƟonal and is intended to help
users beƩer understand how a tree is assembled from a legacy linear structure of objects
that logically represent hierarchical relaƟonships.

As input, the API TransformaƟon Process receives a collecƟon of objects that will be
transformed into a tree through five disƟnct and consecuƟve phases:

1. Pre-ValidaƟon

This phase performs a set of validaƟons to verify whether the received input complies
with the adopted specificaƟons. An IllegalArgumentExcepƟon may be thrown if the list

40

of objects to be transformed is null or empty, while a TreeExcepƟon is thrown when any
other specificaƟon is violated.

The following validaƟons are performed:

 Verifies that the list of objects to be transformed is not null or empty.

 Verifies whether a session with the same idenƟfier already exists.

 Verifies that the class of the objects to be transformed is annotated with @Tree.

 Verifies that the class of the objects to be transformed is annotated with @Id.

 Verifies that the class of the objects to be transformed is annotated with
@Parent.

 Verifies that the @Id and @Parent aƩributes have the same type.

 Verifies whether the class of the objects implements Serializable.

 Verifies whether any object has a null value for the @Id aƩribute.

 Checks for duplicate @Id values.

 Verifies that the class of the objects to be transformed provides valid geƩers and
seƩers.

2. ExtracƟon

If the input list of objects passes all validaƟons from the previous phase, the HappyTree
API proceeds to extract the objects to separate them from their respecƟve parent
references. As a result, the output of this phase consists of two disƟnct groups: the
source objects and their corresponding parent references.

3. IniƟalizaƟon

In this phase, the HappyTree API instanƟates an Element object for each source object
provided as input. The values of the @Id and @Parent aƩributes from the source object
are assigned to the corresponding element.

In addiƟon, the source object itself is automaƟcally wrapped within the element, making
it eligible to represent a node in the tree, since an Element naturally represents a node
in the context of the HappyTree API.

AŌer the tree has been built, the original source object can be retrieved by invoking the
Element.unwrap() method.

As a result of this phase, all elements are instanƟated and contain the complete
informaƟon derived from the source objects.

41

4. Binding

AŌer obtaining the list of elements from the previous phase, the HappyTree API binds
each element to its respecƟve parent using the parent informaƟon extracted during the
ExtracƟon phase.

This is the phase in which the tree is actually assembled. For each node in the tree, there
is a corresponding Element object, where each element contains:

 The value of the @Id aƩribute.

 The value of the @Parent aƩribute.

 The wrapped object node corresponding to the source object transformed
during the process.

 A collecƟon of child elements represenƟng its direct descendants.

 The tree session to which the element belongs.

